

CSE 114A

Foundations of Programming
Languages

Lecture 1: Course Overview

Based on course materials developed by Ranjit Jhala and Owen Arden

A Programming Language
• Two variables

– x, y

• Three operations
– x++
– x--
– (x=0)? L1:L2;

L1: x++;
 y--;
 (y=0)?L2:L1
L2: …

Fact: This is “equivalent to” to every PL!

Good luck writing quicksort
 … or Windows, Google, Spotify!

So why study PL ?

Programming language

shapes
Programming thought

So why study PL ?

Language affects how:
• Ideas are expressed
• Computation is expressed

Course Goals

“Free your mind”
-Morpheus

Learn New Languages/Constructs

New ways to:
- describe
- organize
- think about
computation

Goal: Enable you to Program

• Readable
• Correct
• Extendable
• Modifiable
• Reusable

#goals

Learn How To Learn

Goal: How to learn new PLs

No Java (C#) 15 (10) years ago
AJAX? Python? Ruby? Erlang? F#?...

Learn the anatomy of a PL
• Fundamental building blocks
• Different guises in different PLs

Re-learn the PLs you already know

10

#goals

Design new languages

Goal: How to design new PLs
…“who, me ?”

Buried in every extensible system is a PL
• Emacs, Android: Lisp
• Word, Powerpoint: Macros, VBScript
• Unreal: UnrealScript (Game Scripting)
• Facebook: FBML, FBJS
• SQL, Renderman, LaTeX, XML …

12

#goals

Choose right language

Enables you to choose right PL

“…but isn’t that decided by
• libraries,
• standards,
• and my boss ?”
Yes.

My goal: educate tomorrow’s tech leaders
& bosses, so you’ll make informed choices

Speaking of Right and Wrong...

Imperative
Programming

x = x+1

WTF?
x = x+1

Imperative = Mutation

Imperative = Mutation

Bad
!

Don’t take my word for it

John Carmack
Creator of FPS: Doom, Quake,...

Don’t take my word for it
Tim Sweeney (Epic, Creator of UNREAL)

“In a concurrent world,
imperative is the wrong default”

Functional
Programming

Func%onal	Programming	?

No	Assignment.	

No	Muta0on.	

No	Loops.

OMG! Who uses FP?!

So,	Who	Uses	FP	?

MapReduce

So,	Who	Uses	FP	?

Linq,	F#

So,	Who	Uses	FP	?

Erlang

So,	Who	Uses	FP	?

Scala

So,	Who	Uses	FP	?

Wall	Street	

(all	of	the	above)

So,	Who	Uses	FP	?

…CSE	114A

Course Mechanics and
Logistics

Logistics

Course website:
https://ucsc-cse-114a.github.io/Winter22/

Resources

Course texts (optional):
• An	Introduc%on	to	Func%onal	Programming	Through	Lambda	Calculus	by	Greg	

Michaelson.	Free	pre-print.	

• Thinking	Func%onally	with	Haskell	by	Richard	Bird.	Available	online	(free	via	library).	

• Programming	in	Haskell	(2nd	ed.)	by	Graham	HuOon.	

• Real	World	Haskell	by	Bryan	O’Sullivan.	Available	online	(free	via	library).	

• Learn	You	a	Haskell	for	Great	Good	by	Miran	Lipovača.	Available	free	online	

• Write	You	a	Haskell	by	Stephen	Diehl.	(incomplete,	but	useful)	Available	free	online

33

Resources
Haskell Dev Container

– https://github.com/UCSC-CSE-114A/cs114a-devcontainer

Recommended IDE: VS Code

• New this year, legit IDE setup for Haskell!
– Devcontainer: A Haskell dev environment is

built in a container and VS Code
automatically mounts the container volume

– Also some integrations with Git and GitHub
Classroom

35

VS Code

36

VS Code

37

Peer Instruction (ish)

Peer Instruction
• Make class interactive

– Help YOU and ME understand whats tricky

• Respond to in-class quizzes
– 5% of your grade
– Respond to 75% questions

• Bring laptop/phone if you have one

In Class Exercises
1.	Solo	Vote:	Think	for	yourself,	select	answer	

2.	Discuss:	Analyze	Problem	with	neighbors	
• Prac%ce	analyzing,	talking	about	tricky	no%ons	
• Reach	consensus	
• Have	ques%ons,	raise	your	hand!	

3.	Group	Vote:	Everyone	in	group	votes	

4.	Class-wide	Discussion:	
• What	did	you	find	easy/hard?	
• Ques%ons	from	here	show	up	in	exams

In Class Exercises
Let’s	try	it	out	(if	you	have	a	device):	

http://tiny.cc/cse116-trial

Make	your	individual	choice

In Class Exercises
Let’s	try	it	out	(if	you	have	a	device):	

http://tiny.cc/cse116-trial

Now	“confer”	with	a	neighbor	and	
agree	on	a	choice	for	your	group

Requirements and Grading

• In-Class Exercises: 5%
• Midterm: 30%
• Programming Assignments (6): 30%
• Final: 35%

Two hints/rumors:
1. Lots of work
2. Don’t worry (too much) about grade

Note: Regrades must be requested within two
weeks of receiving grade

Resources

• Online lecture notes
• Readings and exercises
• Webcasts:

– User: cse-116-1
– Pass: lambda

• Pay attention to lecture and section!
• Do assignments yourself (+partner)!

• Lots of help available, will be adding
more soon. (watch website)

• Lab sessions 4 days/wk with tutors to
help with assignments

• Discussion sections with TAs to help
with lecture concepts

Ask for help!

45

Programming Assignments
All assignments are managed through GitHub

Classroom (link on course page).

– You must push your submitted code.

Deadline Extension:
– Four “late days”, used as “whole unit”
– 5 mins late = 1 late day
– Plan ahead, no other extensions

See course webpage for HW deadlines

Programming Assignments

 Unfamiliar languages
+ Unfamiliar environments

Start Early!

Scoring = Test suite

Weekly Programming Assignments

No Compile, No Score

Forget Java, C, C++ …
… other 20th century PLs

Weekly Programming Assignments

Don’t complain
… that Haskell is hard
… that Haskell is @!%@#

It is not.

Immerse yourself in new language

Immerse yourself in new language

#goals

FREE YOUR MIND

Word from our sponsor …
• Programming Assignments done ALONE or

in (official) groups of two (as permitted)

• We use plagiarism detection software
– MOSS is fantastic, plagiarize at your own risk

• Zero Tolerance
– offenders punished ruthlessly

• Please see academic integrity statement:
– https://ue.ucsc.edu/academic-misconduct.html

#goals

Ask me questions

